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ABSTRACT

Motivation: A number of algorithms and analytical models
have been employed to reduce the multidimensional
complexity of DNA array data and attempt to extract some
meaningful interpretation of the results. These include
clustering, principal components analysis, self-organizing
maps, and support vector machine analysis. Each method
assumes an implicit model for the data, many of which
separate genes into distinct clusters defined by similar
expression profiles in the samples tested. A point of
concern is that many genes may be involved in a number
of distinct behaviours, and should therefore be modelled
to fit into as many separate clusters as detected in the
multidimensional gene expression space. The analysis
of gene expression data using a decomposition model
that is independent of the observer involved would be
highly beneficial to improve standard and reproducible
classification of clinical and research samples.

Results: We present a variational independent component
analysis (ICA) method for reducing high dimensional
DNA array data to a smaller set of latent variables,
each associated with a gene signature. We present the
results of applying the method to data from an ovarian
cancer study, revealing a number of tissue type-specific
and tissue type-independent gene signatures present
in varying amounts among the samples surveyed. The
observer independent results of such molecular analysis of
biological samples could help identify patients who would
benefit from different treatment strategies. We further
explore the application of the model to similar high-
throughput studies.

Availability: Supporting details of the decomposition
model can be found at http://www.inference.phy.cam.ac.
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uk/mackay/abstracts/icagenes.html and the ovarian can-
cer study data can be found at http://www.path.cam.ac.uk/
~angio/publications/martoglioetal2002/ovcaica.html.
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INTRODUCTION

Complementary DNA arrays generate a large volume
of data representing relative gene transcript abundance
in the samples surveyed. To date, a variety of algo-
rithms and mathematical models have been used for
the management, analysis, and interpretation of high-
density array data. However, the experimental basis and
range of assumptions needed place a limit in the field.
Interpretation of the data is aimed at defining genes
with similar expression patterns, with the underlying
assumption that co-expressed genes are functionally
related (Eiseret al., 1998; Spellmaret al., 1998), or may
share similar regulatory systems (Heyetral., 1999).
Thus, depending on thepriori information available on

the genes surveyed and the nature of the experimental
design, computational approaches can be designed to
study the causative response in an experimental system, or
to predict the functional nature of novel genes. Reliance
ona priori or intuitive knowledge is a heavy limitation to
the application of computational methods in areas such as
molecular diagnostics. No two (or more) genes are likely
to exhibit precisely the same co-expression pattern in dif-
ferent pathophysiological samples. Also, many genes may
be involved in a number of distinct behaviours defined in
separate clusters in the multidimensional gene expression
space. Many underlying conditions in a given sample
(e.g. angiogenesis, tumorigenesis, apoptosis) may have
yet-to-be-defined hallmark gene expression profiles that
would be masked or unnoticed unless a hybrid of super-
vised and unsupervised clustering methods was correctly
applied (Tamayat al., 1999). Although there are many
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mathematical models that can be applied and tested texpression pattern that distinguishes variations amongst
analyze gene expression data, there is a current lack in thlbe samples. The ability of the model to uncover hidden
quantitative definition of probabilities for gene expressiongene signatures within the data results in multiple tagging,
patterns. These should emerge not only on a gene-to-genar, classification, of the samples. This, in turn, allows con-
or gene—network basis, but also in a system-specifiditional sub-categorization by the observer, such that dis-
environment. That is, the analysis and interpretation ofinct types of pathophysiological behaviours can be cap-
gene expression data should be greatly facilitated once thared and assessed within a given sample or sample sets.
guantitative probability of gene co-expression profiles isThe method is exemplified using data from an ovarian can-
defined in tissue-, disease-, and pathophysiology-specificer study employing tailored cDNA arrays with 175 gene
contexts. These questions should start to be answerddrgets (Martoglioet al., 2000; http://www.path.cam.ac.
once reproducible data sets from large sample groupsik/~angio/publications/martoglioetal2002/ovcaica.html).
such as biopsy tissue samples, cell cultures modelling

different pathophysiological systems, and so on, becom&YSTEMS AND METHODS

awailable. The working data set consisted of a total of 17 hybridiza-
In the attempt to avoid the use efpriori knowledge tion profiles, corresponding to normal ovaty = 5),
or probabilistic predictions to pre-define clustering paramserous papillary adenocarcinortra = 5), poorly differ-
eters, we tested an unsupervised model based on Indgntiated serous papillary adenocarcinama= 4), benign
pendent Component Analysis (ICA; Bell and Sejnowski,serous cystadenomén = 1), and benign mucinous
1995; Martoglio, 2000; Miskin, 2001). Whereas a stan-cystadenoman = 2). These were numbered tissue 1-17,
dard clustering method assigns each germnéxluster of  respectively. Details on sample preparation, labelling,
genes which have correlated expression patterns, we bgybridization to cDNA arrays, and reproducibility con-
lieve it is more reasonable to expect each gene to be inflirols were as described in Martogkbal. (2000). Results
enced byseveral transcription factors, each of which in- emerging from the same data set using non-ICA methods

fluences several genes. Thus we used a model in Whickye also presented in Martogkbal. (2000).
each gene can participate, to varying degrees, in many

independent patterns of covariation. We called these cdhdependent component analysis (ICA) modelling
expression patterns ‘gene signatures’. The overall gene exA/e assume that the data to be modelled is a makrix
pression profile from each hybridized array is consideredf gene expression levels in different tissues (samples).
to be a linear combination of independent latent gene exthe entrydig gives the expression level of gemgin
pression profiles, which are discovered by bilinear decomtissuet. A cartoon of such a data matri@ is shown in
position. By employing this method (see description inFigure 1a. We assume that gene expression levels vary
Systems and methods a number of problems inherent under the influence ofl latent variablesay, a, ..., aq.
in multivariate analysis are bypassed: (1) genes are flexFhe number of latent variablesi( there are is something
ibly identified in as many co-expression patterns (or, inwe will attempt to infer from the data. Each gene
analogy, clusters) as necessary, rather than reducing thexpression level may be influenced by one or more of these
allocation to any one particular set of observations; (2) delatent variables. Which genes are influenced by htte
tailed information is maintained by identifying a number latent variable, and how strongly, is described by a vector
of latent variables underlying the whole data set, rathebpg, with g = 1...G. This vector describes a set of genes
than reducing interpretation to a rigid set of cluster possithat are expected to co-vary—they will tend to go up and
bilities; and (3) the number of potentially valid underlying down together. A list ofH = 4 such vectors is shown
features, or gene co-expression patterns, can be assesgeéigure 1b. We call these vectors ‘gene signatures’. The
after the learning process rather than having to pre-set théirst latent variable in this example influences all genes.
number of possible clusters and having to limit the analytdf the latent variablea; is large, all genes are expressed
ical model around these. It would therefore be possible tat higher levels, though some more than others. We might
classify samples by ‘blind’, or observer independent, sepeall such a latent variable a housekeeping latent variable
aration with minimal imposition of functional structure or (seeDiscussion and conclusion Latent variable number
limiting clauses to the analytical learning process. This alh = 3 influences just five of the genes, equally; latent
lows the disclosure of hidden gene co-expression patternsariableh = 4 influences another five; and latent variable
or gene signatures, in the data sets that would have othen-= 2 influences about half of the genes.
wise not been identified with other methods. We assume that the gene expression levels in each
Each gene signature within the data defines a combindissue t are generated as follows: the latent vari-
tion of genes that behave in a similar fashion, and is repreables aj,a»,...,ay are set to particular levels
sented in a quantitative manner per tissue sample. In othesy, &, ..., aH, where a specifies the amount of
words, each gene signature represents a distinct gene qoatternh present in tissug the gene expression levelg
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Fig. 1. (a) Representation of data matrix modelling mock data  and there was no noise. Another way of representing the
from a DNA array containing 35 gene& (= 35), hybridized with  atrices D, A and B is by Hinton diagrams in which the
7 tissue samplesT( = 7). Each tissue shows a different overall magnitude of a number is shown by the size of a square

pattern for all 35 gene hybridization intensities. (b) Gene signatures _. S .
revealed by independent component analysis (ICA) of the mock datin'zlg.l‘l.re 2). Here, all entries in the ma_trlf:ésand_B are .
presented in (a). Each gene signature (latent variaptepresents positive, and all the squares are white; negative entries

a set of genes that are expected to co-vary in the samples testeyould be represented. by bIagk squares. If a model with
Gene signaturd = 1 in this example influences all genes, and & number of latent variableBl significantly smaller than

may be considered a ‘housekeeping’, or ubiquitous, gene signaturé&; fits the data well, the model can evidently compress the
expected to be present in a relatively high amount in all samplesdata substantially, since each extra tissu&'sxpression
Gene signaturé = 2 influences approximately half of the genes |eve| are captured by just latent variables.
on the array, while gene signatdne: 3.influences just five of the For microarray studies in which each spot on the array
genes, equally, and gene signathre 4 influences another 5 genes yields two measurements, an experimental measurement
from the arrayed set. . .

myg and a control measuremely, dig is defined to be

the ratiomg/ltg. We would prefer to replace all such

are then found by adding up the pattebrg, weighted by ~‘normalizations’ of data by inferences of the implicit
the amountsy,. We assume that the data are noisy’ Withvariables. One reason not to work with the experimental

noisenyq in the measurement ofg. So, rat_io m_tg/ltg is because t_he noise in the raFio comes from
noise inm and from noise in. Those noise variables
thg = Zathbhg + Nig. might be Gaussian, but the noise in the ratio certainly
h won't be. These issues and others, such as inference,

probability, and approximation in the model presented can
be found at http://www.inference.phy.cam.ac.uk/mackay/
D=AB+N. abstracts/icagenes.html.

Or, using matrix notation,
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Fig. 3. Gene signatures revealed by independent component analysis (ICA) of ovarian cDNA array data. Independent component analysis
(ICA) of ovarian cDNA array results revealed tissue type-specific gene signatures as well as tissue type-independent gene signatures present in
varying amounts among the ovarian samples surveyed (red circles). For example, gene signature12 can be observed consistently predominant
in the pd-spa sample group (delineated in blue), while inherent variations within the histologically similar samples (i.e. pd-spa) can be
observed at gene signatures 1, 8, and 14 (red rectangles). Molecular analysis of tissue samples in such multi-parameter schemes may help
to classify tissues based on a number of underlying disease processes. This could help identify patients who would benefit from different
treatment strategies.

RESULTS publications/martoglioetal2002/ovcaica.html). If the gene

Tissue-specific gene signatures: testing the matrix signatures were true definers of tissue type, they could
Th king dat t isted of a total of 17 h be fixed and used to test further independent samples.

'€ working data set consisied of a folal o Y"That is, observer-independent analysis could be used
bridization profiles, as described above (s&gstems

. to classify ovarian tissue samples based on their gene
and methods. Fifteen of the samples were selectedgignatyre-specific profile. In order to assess the ICA-

in the first instance and submitted to the independenhaseq results, the defined gene signatures were fixed,
component analysis, without any tissue detail entry inta,ch that the A matrix remained constant (Systems

the modelling process. An overall assessment of thgnd methody, and the two ovarian samples that had
results indicated the possible definition of tissue-specifi¢,ot been submitted to the initial analysis (i.e. tissue
gene signatures such as gene signature 3: benign mg-(normal ovary) and tissue 13 (poorly differentiated
cinous cystadenoma (bmc), gene signature 7: benigserous papillary adenocarcinoma)) were tested. Tissue 13
serous cystadenoma (bsc), and gene signature 12: poodjiowed prominent mapping to the pd-spa gene signature
differentiated serous papillary adenocarcinoma (pd-spagene signature 12) defined in the learning run, while
(see ‘Learning run’, http://www.path.cam.ac.t@ngio/ tissue 2 expressed similar amounts of that profile as
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Fig. 4. Graphical representation of gerg 6ignatures unveiled by independent component analysis (ICA) of ovarian tailored cDNA array

data. Each graph shows the gene expression profile (genes aloxgiiig relative signal intensity along theaxis), defining each gene

signature. Error bars are shown for visual assessment of the signal-to-noise ratio. Gene signatures 1, 3,4, 5, 7, 8, 10, 12, 14, and 15 (red boxes)
show consistent representation (minimal variance) in the ovarian samples tested. Analysis of the leading genes for these gene signatures may
indicate inherent patho-physiological processes distinctively measurable among the ovarian cancer specimens.

other normal ovarian tissues (Figure 3; see ‘Fixed matrixamongst all tissue samples tested. Assessment of the
tests’,  http://www.path.cam.ac.ukéngio/publications/  signal-to-noise ratio, (log(mean(averagévariance))),
martoglioetal2002/ovcaica.html). These results supportetbr each potential gene signature (row) is therefore
the definition of a tissue-specific gene signature able tmecessary prior to descriptive comparisons across the
distinguish poorly differentiated serous papillary adenosamples (columns) tested. A graphical representation of
carcioma specimens amongst mixed ovarian samples i@ach potential gene signature is presented in Figure 4, and
the experimental setting described. corresponding signal-to-noise ratios can be seen in Ta-
The definition of gene signatures is dependent on théle 1 at http://www.path.cam.ac.ukangio/publications/
representation of a given gene co-expression profilenartoglioetal2002/ovcaica.html. Gene signatures 2, 6,
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9, 11, and 13 revealed a high level of variance, andturrent binary disease diagnostic methods. This could lead
were therefore not considered futher. On the other handp improved diagnostic and prognostic interpretations,
gene signatures 1, 3, 4, 5, 7, 8, 10, 12, 14, and 15 alnd the development of a targeted selection of treatment
showed clear definition of a hidden gene expressiorstrategies.

profile. Assessment of these specific profiles may hol% _ . d b .
important leads to conditions inherent in all the ovarianoeNign mucinous cystadenoma (bmc) gene signature.

tissue samples, which vary depending on the behaviour Oqaene signature 3, defined by leading genes metallopro-

the tissue with regard to the pathophysiological state O}elnaste |n5h|Hbllt_3rBl A(-I\I;Illlglgl) _5-hyd;oxyt|ryptan|1_|n% 2B d
condition that the gene signatures represent. The leadil§®cP olr( ) )’t b ear:nnase_ ,c?_gr?nu in 1,6an d
genes defining each gene signature are listed in Tab ucin-1, was seen to beé most prominent in issues 16 an
2 a http://'www.path.cam.ac.ukfangio/publications/ 7, both of benign mucinous cystadenoma classification,
martoglioetal2002/ovcaica.html, although we emphasiz@mn?nﬁ];st etl_lstsheegvilnSan élgr?quoen:Sg}cgldesasgg:]esystz.n[c\llOr;nil-
that signatures are based on the relative co-expression ples ( ISsu - ) ) C ! y su
all 175 genes on the array. racteq proflle,for this gene signature; interestingly, tissue
In the process of defining gene signatures for future4’ the nqrmal c_ontra—lateral ovary from the same patient
applications, a larger sample data set is suggested Tha? bmc-ridden tissue 16, demonstrated the least subtracted

is, the larger the sample set used for the initial ‘Iearnind)rOfIIe amongst all normal samples.

run’, the stronger the robustness of the emerging genpre-menopause gene signature. Gene signature 4, de-
signatures. Nevertheless, it is interesting to note that thfined by leading genes endothelin-1 receptor (EDNRA),
ICA-based method was able to extract meaningful hidde@adherin-6, and Cu/Zn-superoxide dismutase, was dis-
gene co-expression profiles from a limited 15-sample setinctively prominent in tissue 1, a member of the normal
pointing to its potential for diagnostic, prognostic, or ovaries group, but originating from a pre-menopausal

therapeutic applications. patient. This observation showed the sensitivity of the

) S ) ) ICA-based method in discriminating functionally dis-
Biological interpretation of cDNA array-derived tinct samples not detected by conventional intra-class
gene signatures comparative methods (Martogla al., 2000).

We note again that larger studies incorporating larger . - . .
jChemore5|stance/matrlx integrity gene signature. The

sample and gene sets will lead to more conclusiv . - .
definitions of emerging gene signatures. In the meantim ?Qd'ng genes defm_lng gene signature 15 were Chaf.a‘?tef'
stic of a chemoresistant profile (e.g. cofilin, glutathione

a number of important observations from the presenf ¢ P ous| d M I
study are noteworthy and may be considered in futur transierase b, previously presente z_irtogaﬁoa "
000) and had a predominance of matrix metallopro-

experimental designs, s follows. teinases (MMP-3, MMP-7, MMP-10), known to degrade
Poorly differentiated serous papillary adenocarci-  the cellular matrix in a number of pathophysiological
noma (pd-spa) gene signature. Of all ovarian tissue conditions, including vessel invasion and metastasis
samples surveyed, tissues 11, 12, 13, and 14, a(Sang, 1998; Yamashitet al., 1998; Ishii and Asuwa,
pd-spa samples, were consistently seen to have th&000; von Lampeet al., 2000). Thus, inspection of
most prominent abundance for gene signature 12he molecular profile of a specimen based on this gene
This specific gene co-expression pattern includedsignature could indicate the invasive state of the tissue.
highly expressed Tiel, placental growth factor, HLA I, This type of check-point could aid in treatment decisions
HLA-DR, cadherin-3, cadherin-11, gp130 and cofilin that would, for example, interfere with TIMPs or other
(see Table 2 at http://www.path.cam.aculthgio/  related molecules, as in recent anti-angiogenic treatment
publications/martoglioetal2002/ovcaica.html). Althoughstrategies (Blavieet al., 1999; Indraccolet al., 1999).
histopathological classification is supported by the tissue The results presented show promising application to
type-specific gene signature, heterogeneities amongst tfigture molecular diagnostic, prognostic, and therapeutic
pd-spa samples were captured by other gene signaturefgqpllcatlons. Further studies incorporating more tissue
such as gene signature 1, 8, and 14 (Figure 3). The path2mples would be needed to confirm and assign the
physiological traits represented by these gene signaturé®mbined relevance of the observed gene signatures.

is not yet defined. Nevertheless, they indicate that pheno-

typic tissue type- classification is not enough to capturd!SCUSSION AND CONCLUSION

important differences inherent amongst similar tissueAssessment of the ICA-based results revealed a num-
samples. The use of a combination of tissue type- anBer of gene signatures representing potential inherent
pathophysiology-specific gene signatures holds promisingathophysiological processes in the various ovarian tissue
application for the sub-classification of patients beyondsamples, as described above. Some gene signatures were
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highly prominent in tissue-specific samples, such as théle 2 at http://www.path.cam.ac.ukangio/publications/

pd-spa gene signature and bmc gene signature, indicatimgartoglioetal2002/ovcaica.html). It is proposed that

potential application in observer-independent tissue clasaormalization of cDNA array data against single genes

sification. Other gene signatures, such as gene signatureadogenously expressed in the samples could hinder

1, 8, 14, and 15, were present at varying levels among thproper comparative analysis of the results. Quantitative

ovarian tissue samples, with no consistent patterns withicomparison of a fixed co-expression profile or signature

a gven tissue type. common to all samples may provide a better means of
Gene signatures defining a given pathophysiological oassessing inherent sample variablity.

disease state are expected to be present at similar levels

among the representative samples of a given tissue typEuture ICA-based developments

This would be true if histopathological classification ca is used in a variety of data mining schemes, as
identified tissues undergoing a finite regime of moleculat; has many profitable properties, such as analytical
changes leading to the disease phenotype. The mixgdp siness and scalability to large data sets. A similar
representation of some gene signatures among the ovarigih, el 1o that described above has been applied by Lieber-
samples may be due to a number of reasons: (1) geNfeister to analyze cell cycle-related gene expression in
signatures may be identifying mhere_nt pathophysiologicaly,q yeast and human lymphocyte gene expression data
processes in the ovary that vary independently of the(Liebermeister, 2002). With the analysis of further data

’?O"“a' or tut:norigbenic state of lthel tiss.]t‘ea gr (2)d§pm ets from larger high throughput studies, the functional
tissues may have been incorrectly classitied by traditionag;qificance of each gene signature (or ‘mode’, as referred

signatures present. The second explanation proposed

oo . -V iﬁterpretations could be based on a combination of
in line with the reported incidence of observer-dependen

fnherent disease indicators, tested from a single sample

variance in tissue classification (Martogle al., 2000) : I ; . .
S ' ' specimen, resulting in multi-targeted solutions appropriate
and further instigated by the lack of emergence of a geng ", i qividual patient,

signature able to define the spa tissue sample group. To
test this hypothesis, an overall tissue type probability
test was performed on the ICA results, using all geneACKNOW'—E':)GE'V'E'\”_S
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