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ABSTRACT
Motivation: A number of algorithms and analytical models
have been employed to reduce the multidimensional
complexity of DNA array data and attempt to extract some
meaningful interpretation of the results. These include
clustering, principal components analysis, self-organizing
maps, and support vector machine analysis. Each method
assumes an implicit model for the data, many of which
separate genes into distinct clusters defined by similar
expression profiles in the samples tested. A point of
concern is that many genes may be involved in a number
of distinct behaviours, and should therefore be modelled
to fit into as many separate clusters as detected in the
multidimensional gene expression space. The analysis
of gene expression data using a decomposition model
that is independent of the observer involved would be
highly beneficial to improve standard and reproducible
classification of clinical and research samples.
Results: We present a variational independent component
analysis (ICA) method for reducing high dimensional
DNA array data to a smaller set of latent variables,
each associated with a gene signature. We present the
results of applying the method to data from an ovarian
cancer study, revealing a number of tissue type-specific
and tissue type-independent gene signatures present
in varying amounts among the samples surveyed. The
observer independent results of such molecular analysis of
biological samples could help identify patients who would
benefit from different treatment strategies. We further
explore the application of the model to similar high-
throughput studies.
Availability: Supporting details of the decomposition
model can be found at http://www.inference.phy.cam.ac.
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uk/mackay/abstracts/icagenes.html and the ovarian can-
cer study data can be found at http://www.path.cam.ac.uk/
∼angio/publications/martoglioetal2002/ovcaica.html.
Contact: amm53@cam.ac.uk; mackay@mrao.cam.ac.uk

INTRODUCTION
Complementary DNA arrays generate a large volume
of data representing relative gene transcript abundance
in the samples surveyed. To date, a variety of algo-
rithms and mathematical models have been used for
the management, analysis, and interpretation of high-
density array data. However, the experimental basis and
range of assumptions needed place a limit in the field.
Interpretation of the data is aimed at defining genes
with similar expression patterns, with the underlying
assumption that co-expressed genes are functionally
related (Eisenet al., 1998; Spellmanet al., 1998), or may
share similar regulatory systems (Heyeret al., 1999).
Thus, depending on thea priori information available on
the genes surveyed and the nature of the experimental
design, computational approaches can be designed to
study the causative response in an experimental system, or
to predict the functional nature of novel genes. Reliance
on a priori or intuitive knowledge is a heavy limitation to
the application of computational methods in areas such as
molecular diagnostics. No two (or more) genes are likely
to exhibit precisely the same co-expression pattern in dif-
ferent pathophysiological samples. Also, many genes may
be involved in a number of distinct behaviours defined in
separate clusters in the multidimensional gene expression
space. Many underlying conditions in a given sample
(e.g. angiogenesis, tumorigenesis, apoptosis) may have
yet-to-be-defined hallmark gene expression profiles that
would be masked or unnoticed unless a hybrid of super-
vised and unsupervised clustering methods was correctly
applied (Tamayoet al., 1999). Although there are many
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mathematical models that can be applied and tested to
analyze gene expression data, there is a current lack in the
quantitative definition of probabilities for gene expression
patterns. These should emerge not only on a gene-to-gene,
or gene–network basis, but also in a system-specific
environment. That is, the analysis and interpretation of
gene expression data should be greatly facilitated once the
quantitative probability of gene co-expression profiles is
defined in tissue-, disease-, and pathophysiology-specific
contexts. These questions should start to be answered
once reproducible data sets from large sample groups,
such as biopsy tissue samples, cell cultures modelling
different pathophysiological systems, and so on, become
available.

In the attempt to avoid the use ofa priori knowledge
or probabilistic predictions to pre-define clustering param-
eters, we tested an unsupervised model based on Inde-
pendent Component Analysis (ICA; Bell and Sejnowski,
1995; Martoglio, 2000; Miskin, 2001). Whereas a stan-
dard clustering method assigns each gene toone cluster of
genes which have correlated expression patterns, we be-
lieve it is more reasonable to expect each gene to be influ-
enced byseveral transcription factors, each of which in-
fluences several genes. Thus we used a model in which
each gene can participate, to varying degrees, in many
independent patterns of covariation. We called these co-
expression patterns ‘gene signatures’. The overall gene ex-
pression profile from each hybridized array is considered
to be a linear combination of independent latent gene ex-
pression profiles, which are discovered by bilinear decom-
position. By employing this method (see description in
Systems and methods), a number of problems inherent
in multivariate analysis are bypassed: (1) genes are flex-
ibly identified in as many co-expression patterns (or, in
analogy, clusters) as necessary, rather than reducing their
allocation to any one particular set of observations; (2) de-
tailed information is maintained by identifying a number
of latent variables underlying the whole data set, rather
than reducing interpretation to a rigid set of cluster possi-
bilities; and (3) the number of potentially valid underlying
features, or gene co-expression patterns, can be assessed
after the learning process rather than having to pre-set the
number of possible clusters and having to limit the analyt-
ical model around these. It would therefore be possible to
classify samples by ‘blind’, or observer independent, sep-
aration with minimal imposition of functional structure or
limiting clauses to the analytical learning process. This al-
lows the disclosure of hidden gene co-expression patterns,
or gene signatures, in the data sets that would have other-
wise not been identified with other methods.

Each gene signature within the data defines a combina-
tion of genes that behave in a similar fashion, and is repre-
sented in a quantitative manner per tissue sample. In other
words, each gene signature represents a distinct gene co-

expression pattern that distinguishes variations amongst
the samples. The ability of the model to uncover hidden
gene signatures within the data results in multiple tagging,
or classification, of the samples. This, in turn, allows con-
ditional sub-categorization by the observer, such that dis-
tinct types of pathophysiological behaviours can be cap-
tured and assessed within a given sample or sample sets.
The method is exemplified using data from an ovarian can-
cer study employing tailored cDNA arrays with 175 gene
targets (Martoglioet al., 2000; http://www.path.cam.ac.
uk/∼angio/publications/martoglioetal2002/ovcaica.html).

SYSTEMS AND METHODS
The working data set consisted of a total of 17 hybridiza-
tion profiles, corresponding to normal ovary(n = 5),
serous papillary adenocarcinoma(n = 5), poorly differ-
entiated serous papillary adenocarcinoma(n = 4), benign
serous cystadenoma(n = 1), and benign mucinous
cystadenoma(n = 2). These were numbered tissue 1–17,
respectively. Details on sample preparation, labelling,
hybridization to cDNA arrays, and reproducibility con-
trols were as described in Martoglioet al. (2000). Results
emerging from the same data set using non-ICA methods
are also presented in Martoglioet al. (2000).

Independent component analysis (ICA) modelling
We assume that the data to be modelled is a matrixD
of gene expression levels in different tissues (samples).
The entry dtg gives the expression level of geneg in
tissuet . A cartoon of such a data matrixD is shown in
Figure 1a. We assume that gene expression levels vary
under the influence ofH latent variables,a1, a2, . . . , aH .
The number of latent variables (H ) there are is something
we will attempt to infer from the data. Each gene
expression level may be influenced by one or more of these
latent variables. Which genes are influenced by thehth
latent variable, and how strongly, is described by a vector
bhg, with g = 1 . . . G. This vector describes a set of genes
that are expected to co-vary—they will tend to go up and
down together. A list ofH = 4 such vectors is shown
in Figure 1b. We call these vectors ‘gene signatures’. The
first latent variable in this example influences all genes.
If the latent variablea1 is large, all genes are expressed
at higher levels, though some more than others. We might
call such a latent variable a housekeeping latent variable
(seeDiscussion and conclusion). Latent variable number
h = 3 influences just five of the genes, equally; latent
variableh = 4 influences another five; and latent variable
h = 2 influences about half of the genes.

We assume that the gene expression levels in each
tissue t are generated as follows: the latent vari-
ables a1, a2, . . . , aH are set to particular levels
at1, at2, . . . , at H , where ath specifies the amount of
patternh present in tissuet ; the gene expression levelsdtg
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Fig. 1. (a) Representation of data matrixD, modelling mock data
from a DNA array containing 35 genes (G = 35), hybridized with
7 tissue samples (T = 7). Each tissue shows a different overall
pattern for all 35 gene hybridization intensities. (b) Gene signatures
revealed by independent component analysis (ICA) of the mock data
presented in (a). Each gene signature (latent variableh) represents
a set of genes that are expected to co-vary in the samples tested.
Gene signatureh = 1 in this example influences all genes, and
may be considered a ‘housekeeping’, or ubiquitous, gene signature,
expected to be present in a relatively high amount in all samples.
Gene signatureh = 2 influences approximately half of the genes
on the array, while gene signatureh = 3 influences just five of the
genes, equally, and gene signatureh = 4 influences another 5 genes
from the arrayed set.

are then found by adding up the patternsbhg, weighted by
the amountsath . We assume that the data are noisy, with
noisentg in the measurement ofdtg. So,

dtg =
∑

h

athbhg + ntg.

Or, using matrix notation,

D = AB + N .

=

 x

D

BA

Fig. 2.Hinton diagram representations of matrixD (microarray data
set), decomposed toB and A (gene signatures and corresponding
weights, or quantification) in independent component analysis
(ICA).

This is exactly how the mock data in Figure 1a were
generated. The patterns B are those shown in Figure 1b;
the amounts of the patterns are:

A =




3 0.1 2 0.62
0.1 0.1 1 0.1
1 1 0.1 1
1 0 0 4

0.1 1 0.1 1
5.1 0.2 1 1
1 1 0 1




and there was no noise. Another way of representing the
matrices D, A and B is by Hinton diagrams in which the
magnitude of a number is shown by the size of a square
(Figure 2). Here, all entries in the matricesA and B are
positive, and all the squares are white; negative entries
would be represented by black squares. If a model with
a number of latent variablesH significantly smaller than
G fits the data well, the model can evidently compress the
data substantially, since each extra tissue’sG expression
level are captured by justH latent variables.

For microarray studies in which each spot on the array
yields two measurements, an experimental measurement
mtg and a control measurementltg, dtg is defined to be
the ratio mtg/ ltg. We would prefer to replace all such
‘normalizations’ of data by inferences of the implicit
variables. One reason not to work with the experimental
ratio mtg/ ltg is because the noise in the ratio comes from
noise in m and from noise inl. Those noise variables
might be Gaussian, but the noise in the ratio certainly
won’t be. These issues and others, such as inference,
probability, and approximation in the model presented can
be found at http://www.inference.phy.cam.ac.uk/mackay/
abstracts/icagenes.html.
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gene
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TISSUE

     normal                             spa                          pd-spa              bsc    bmc

Fig. 3. Gene signatures revealed by independent component analysis (ICA) of ovarian cDNA array data. Independent component analysis
(ICA) of ovarian cDNA array results revealed tissue type-specific gene signatures as well as tissue type-independent gene signatures present in
varying amounts among the ovarian samples surveyed (red circles). For example, gene signature12 can be observed consistently predominant
in the pd-spa sample group (delineated in blue), while inherent variations within the histologically similar samples (i.e. pd-spa) can be
observed at gene signatures 1, 8, and 14 (red rectangles). Molecular analysis of tissue samples in such multi-parameter schemes may help
to classify tissues based on a number of underlying disease processes. This could help identify patients who would benefit from different
treatment strategies.

RESULTS
Tissue-specific gene signatures: testing the matrix
The working data set consisted of a total of 17 hy-
bridization profiles, as described above (seeSystems
and methods). Fifteen of the samples were selected
in the first instance and submitted to the independent
component analysis, without any tissue detail entry into
the modelling process. An overall assessment of the
results indicated the possible definition of tissue-specific
gene signatures such as gene signature 3: benign mu-
cinous cystadenoma (bmc), gene signature 7: benign
serous cystadenoma (bsc), and gene signature 12: poorly
differentiated serous papillary adenocarcinoma (pd-spa)
(see ‘Learning run’, http://www.path.cam.ac.uk/∼angio/

publications/martoglioetal2002/ovcaica.html). If the gene
signatures were true definers of tissue type, they could
be fixed and used to test further independent samples.
That is, observer-independent analysis could be used
to classify ovarian tissue samples based on their gene
signature-specific profile. In order to assess the ICA-
based results, the defined gene signatures were fixed,
such that the A matrix remained constant (seeSystems
and methods), and the two ovarian samples that had
not been submitted to the initial analysis (i.e. tissue
2 (normal ovary) and tissue 13 (poorly differentiated
serous papillary adenocarcinoma)) were tested. Tissue 13
showed prominent mapping to the pd-spa gene signature
(gene signature 12) defined in the learning run, while
tissue 2 expressed similar amounts of that profile as
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g-signature 1 g-signature 2 g-signature 3

g-signature 4 g-signature 5 g-signature 6

g-signature 7

g-signature 10
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g-signature 11

g-signature 13 g-signature 14
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g-signature 15
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100
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Fig. 4. Graphical representation of gene (g) signatures unveiled by independent component analysis (ICA) of ovarian tailored cDNA array
data. Each graph shows the gene expression profile (genes along thex-axis; relative signal intensity along they-axis), defining each gene
signature. Error bars are shown for visual assessment of the signal-to-noise ratio. Gene signatures 1, 3, 4, 5, 7, 8, 10, 12, 14, and 15 (red boxes)
show consistent representation (minimal variance) in the ovarian samples tested. Analysis of the leading genes for these gene signatures may
indicate inherent patho-physiological processes distinctively measurable among the ovarian cancer specimens.

other normal ovarian tissues (Figure 3; see ‘Fixed matrix
tests’, http://www.path.cam.ac.uk/∼angio/publications/
martoglioetal2002/ovcaica.html). These results supported
the definition of a tissue-specific gene signature able to
distinguish poorly differentiated serous papillary adeno-
carcioma specimens amongst mixed ovarian samples in
the experimental setting described.

The definition of gene signatures is dependent on the
representation of a given gene co-expression profile

amongst all tissue samples tested. Assessment of the
signal-to-noise ratio, (log10(mean(average2/variance))),
for each potential gene signature (row) is therefore
necessary prior to descriptive comparisons across the
samples (columns) tested. A graphical representation of
each potential gene signature is presented in Figure 4, and
corresponding signal-to-noise ratios can be seen in Ta-
ble 1 at http://www.path.cam.ac.uk/∼angio/publications/
martoglioetal2002/ovcaica.html. Gene signatures 2, 6,
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9, 11, and 13 revealed a high level of variance, and
were therefore not considered futher. On the other hand,
gene signatures 1, 3, 4, 5, 7, 8, 10, 12, 14, and 15 all
showed clear definition of a hidden gene expression
profile. Assessment of these specific profiles may hold
important leads to conditions inherent in all the ovarian
tissue samples, which vary depending on the behaviour of
the tissue with regard to the pathophysiological state or
condition that the gene signatures represent. The leading
genes defining each gene signature are listed in Table
2 at http://www.path.cam.ac.uk/∼angio/publications/
martoglioetal2002/ovcaica.html, although we emphasize
that signatures are based on the relative co-expression of
all 175 genes on the array.

In the process of defining gene signatures for future
applications, a larger sample data set is suggested. That
is, the larger the sample set used for the initial ‘learning
run’, the stronger the robustness of the emerging gene
signatures. Nevertheless, it is interesting to note that the
ICA-based method was able to extract meaningful hidden
gene co-expression profiles from a limited 15-sample set,
pointing to its potential for diagnostic, prognostic, or
therapeutic applications.

Biological interpretation of cDNA array-derived
gene signatures
We note again that larger studies incorporating larger
sample and gene sets will lead to more conclusive
definitions of emerging gene signatures. In the meantime,
a number of important observations from the present
study are noteworthy and may be considered in future
experimental designs, as follows.

Poorly differentiated serous papillary adenocarci-
noma (pd-spa) gene signature. Of all ovarian tissue
samples surveyed, tissues 11, 12, 13, and 14, all
pd-spa samples, were consistently seen to have the
most prominent abundance for gene signature 12.
This specific gene co-expression pattern included
highly expressed Tie1, placental growth factor, HLA I,
HLA-DR, cadherin-3, cadherin-11, gp130 and cofilin
(see Table 2 at http://www.path.cam.ac.uk/∼angio/
publications/martoglioetal2002/ovcaica.html). Although
histopathological classification is supported by the tissue
type-specific gene signature, heterogeneities amongst the
pd-spa samples were captured by other gene signatures,
such as gene signature 1, 8, and 14 (Figure 3). The patho-
physiological traits represented by these gene signatures
is not yet defined. Nevertheless, they indicate that pheno-
typic tissue type- classification is not enough to capture
important differences inherent amongst similar tissue
samples. The use of a combination of tissue type- and
pathophysiology-specific gene signatures holds promising
application for the sub-classification of patients beyond

current binary disease diagnostic methods. This could lead
to improved diagnostic and prognostic interpretations,
and the development of a targeted selection of treatment
strategies.

Benign mucinous cystadenoma (bmc) gene signature.
Gene signature 3, defined by leading genes metallopro-
teinase inhibitor 1 (TIMP-1), 5-hydroxytryptamine 2B
receptor (5-HT2B), AMP deaminase 3, calgranulin B, and
mucin-1, was seen to be most prominent in tissues 16 and
17, both of benign mucinous cystadenoma classification,
amongst all the ovarian tissue samples surveyed. Normal
samples (tissues 1–5) demonstrated a consistently sub-
tracted profile for this gene signature; interestingly, tissue
4, the ‘normal’ contra-lateral ovary from the same patient
as bmc-ridden tissue 16, demonstrated the least subtracted
profile amongst all normal samples.

Pre-menopause gene signature. Gene signature 4, de-
fined by leading genes endothelin-1 receptor (EDNRA),
cadherin-6, and Cu/Zn-superoxide dismutase, was dis-
tinctively prominent in tissue 1, a member of the normal
ovaries group, but originating from a pre-menopausal
patient. This observation showed the sensitivity of the
ICA-based method in discriminating functionally dis-
tinct samples not detected by conventional intra-class
comparative methods (Martoglioet al., 2000).

Chemoresistance/matrix integrity gene signature. The
leading genes defining gene signature 15 were character-
istic of a chemoresistant profile (e.g. cofilin, glutathione
S-transferase P, previously presented Martoglioet al.,
2000) and had a predominance of matrix metallopro-
teinases (MMP-3, MMP-7, MMP-10), known to degrade
the cellular matrix in a number of pathophysiological
conditions, including vessel invasion and metastasis
(Sang, 1998; Yamashitaet al., 1998; Ishii and Asuwa,
2000; von Lampeet al., 2000). Thus, inspection of
the molecular profile of a specimen based on this gene
signature could indicate the invasive state of the tissue.
This type of check-point could aid in treatment decisions
that would, for example, interfere with TIMPs or other
related molecules, as in recent anti-angiogenic treatment
strategies (Blavieret al., 1999; Indraccoloet al., 1999).

The results presented show promising application to
future molecular diagnostic, prognostic, and therapeutic
applications. Further studies incorporating more tissue
samples would be needed to confirm and assign the
combined relevance of the observed gene signatures.

DISCUSSION AND CONCLUSION
Assessment of the ICA-based results revealed a num-
ber of gene signatures representing potential inherent
pathophysiological processes in the various ovarian tissue
samples, as described above. Some gene signatures were
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highly prominent in tissue-specific samples, such as the
pd-spa gene signature and bmc gene signature, indicating
potential application in observer-independent tissue clas-
sification. Other gene signatures, such as gene signatures
1, 8, 14, and 15, were present at varying levels among the
ovarian tissue samples, with no consistent patterns within
a given tissue type.

Gene signatures defining a given pathophysiological or
disease state are expected to be present at similar levels
among the representative samples of a given tissue type.
This would be true if histopathological classification
identified tissues undergoing a finite regime of molecular
changes leading to the disease phenotype. The mixed
representation of some gene signatures among the ovarian
samples may be due to a number of reasons: (1) gene
signatures may be identifying inherent pathophysiological
processes in the ovary that vary independently of the
normal or tumorigenic state of the tissue, or (2) some
tissues may have been incorrectly classified by traditional
histopathological methods. Should (1) hold true, larger
studies and further comparative parameters are necessary
to define the molecular trait defined by the specific gene
signatures present. The second explanation proposed is
in line with the reported incidence of observer-dependent
variance in tissue classification (Martoglioet al., 2000),
and further instigated by the lack of emergence of a gene
signature able to define the spa tissue sample group. To
test this hypothesis, an overall tissue type probability
test was performed on the ICA results, using all gene
signatures defined to model clustering of the tissue
samples into normal or diseased groups. The results
showed that tissues 6, 7, and 10, expected to be of spa
type, had a partial overall molecular profile similar to
that of the normal ovary group. Interestingly, tissues 4
and 5, which were samples of ‘normal’ ovary of patients
with benign mucinous cystadenoma and benign serous
cystadenoma in the contra-lateral ovary, respectively,
showed a partial overall molecular profile similar to
that of the diseased ovary group (results not shown).
This supports the possibility that mis-classification of
some of the spa samples may be hindering disclosure of
a spa-specific gene signature. The application of gene
signatures may contribute to the development of im-
proved diagnostic, prognostic, and therapeutic screening
regimes.

Exploring data normalization issues
Amongst the differentially expressed gene signatures
discussed above, ICA revealed a gene signature ubiqui-
tously expressed in all tissues queried (Figure 3, gene
signature 5). Elongation factor 1-alpha and actin were
amongst the leading genes in the ubiquitous gene sig-
nature, in agreement with previous independent reports
(van de Corputet al., 1998; leading genes listed in Ta-

ble 2 at http://www.path.cam.ac.uk/∼angio/publications/
martoglioetal2002/ovcaica.html). It is proposed that
normalization of cDNA array data against single genes
endogenously expressed in the samples could hinder
proper comparative analysis of the results. Quantitative
comparison of a fixed co-expression profile or signature
common to all samples may provide a better means of
assessing inherent sample variablity.

Future ICA-based developments
ICA is used in a variety of data mining schemes, as
it has many profitable properties, such as analytical
robustness and scalability to large data sets. A similar
model to that described above has been applied by Lieber-
meister to analyze cell cycle-related gene expression in
the yeast and human lymphocyte gene expression data
(Liebermeister, 2002). With the analysis of further data
sets from larger high throughput studies, the functional
significance of each gene signature (or ‘mode’, as referred
to by Liebermeister) can be described and tested. The
analytical method can be similarly applied to protein high
throughput studies. In the future, treatment or prognostic
interpretations could be based on a combination of
inherent disease indicators, tested from a single sample
specimen, resulting in multi-targeted solutions appropriate
to the individual patient.
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